Max Marks: 70

B.TECH. I Year(R09) Regular Examinations, May/June 2010 MATHEMATICAL METHODS

(Common to Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering, Electronics & Instrumentation Engineering, Electronics & Computer Engineering, Electronics & Control Engineering, Information Technology, Computer Science & Systems Engineering)

Time: 3 hours

Answer any FIVE questions

Answer any FIVE questions
All questions carry equal marks

- 1. (a) Reduce the matrix $A = \begin{pmatrix} 3 & 1 & 4 & 6 \\ 2 & 1 & 2 & 4 \\ 4 & 2 & 5 & 8 \\ 1 & 1 & 2 & 2 \end{pmatrix}$ to an Echlon form and hence
 - (b) Find two non-singular matrices P and Q such that PAQ will be in the normal form

where
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix}$$

find its rank.

- 2. (a) Prove that the eigen values of an orthogonal matrix are of unit modulus.
 - (b) Reduce the following quadratic form to canonical form by Lagrange's reduction. $x_1^2 + 5x_2^2 + 9x_3^2 2x_1x_2 + 10x_2x_3 + 2x_1x_3$ and hence find the index, signature and nature of the quadratic form.
- 3. (a) Find the root of the equation x^3 5x + 1 = 0 using the Bisection method in 5 stages.
 - (b) By using Regula-Falsi method, find an approximate root of the equation $x^4 x 10 = 0$ that lies between 1.8 and 2. Carry out three approximatations.
- 4. (a) Find by Taylor's series method the value of x at x=0.1 to five places of decimals from $\frac{dy}{dx}=x^2y-1, y(0)=1.$
 - (b) Find the value of y at x=0.1 by Picard's method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1.
- 5. (a) Define a Fourier series and write the Dirichlet conditions for the expansion of f(x) as a Fourier Series $(\alpha, \alpha + 2\pi)$.
 - (b) Express the function $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| \ge 1 \end{cases}$ as a Fourier integral.

Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$.

- 6. (a) Form the partial differential equation by eliminating the arbitrary constants a ,b and c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - (b) Solve the PDE by the method of separation of variables $y^3z_x + x^2z_y = 0$.
- 7. (a) Prove that Z-transform is linear.
 - (b) Find (i) $Z(na^n)$. (ii) $Z(n^2 a^n)$.
- 8. (a) Fit a straight line to the following data

110 00 50101151110			11110 (101101	
X	0	1	2	3	4
У	1	1.8	3.3	4.5	6.5

by the method of least squares.

(b) For the following data, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2

- /					dx^2			
	X	1.0	1.2	1.4	1.6	1.8	2.0	2.2
	У	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0256

Code: 9ABS105

B.TECH. I Year(R09) Regular Examinations, May/June 2010 MATHEMATICAL METHODS

(Common to Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering, Electronics & Instrumentation Engineering, Electronics & Computer Engineering, Electronics & Control Engineering, Information Technology, Computer Science & Systems Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1. (a) Apply elementary transformations to find the rank of A =
$$\begin{pmatrix} 1 & -7 & 3 & -3 \\ 7 & 20 & -2 & 25 \\ 5 & -2 & 4 & 7 \end{pmatrix}$$

(b) Compute the inverse of
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 3 & -2 \\ 2 & 0 & -4 \end{pmatrix}$$
 by Gauss-Jordan method.

- (a) Prove that the eigen values of a Hermitian matrix are all real,
 - (b) Reduce the following quadratic form to canonical form by Lagrange's reduction x^2 - $14y^2$ + $2z^2$ + 4xy + 16yz + 2zx and hence find the index, signature and nature of the quadratic form.
- (a) Find and approximate value of the real root of x³ x 1 = 0 using the Bisection Method.
 (b) Find the root of the equation x log₁₀(x) = 1.2, using false position method.
- 4. Using modified Euler's method, find an approximate value of y when x=0.3, given that $\frac{dy}{dy} = x + y \cdot y(0) = 1$ $\underbrace{\frac{dy}{dx}} = x + y, y(0) = 1.$
- $\frac{dy}{dx} = x + y, y(0) = 1.$ 5. (a) Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi x)^2$ in $0 < x < 2\pi$.
 - (b) Express $f(x) = \begin{cases} 1 & \text{for } 0 \le x \le \pi \\ 0 & \text{for } x > \pi \end{cases}$ as a Fourier sine integral.
- (a) Form the partial differential equation by eliminating the arbitrary constants a and b if $4(1+a^2)z=(x+ay+b)^2$.
 - (b) Solve by the method of separation of variables $4u_x+u_y=3u$ and $u(0,y)=e^{-5y}$.
- 7. (a) State and prove damping rule for Z-transform.
 - (b) Find $z^{-1} \left\{ \frac{z}{z^2 + 11z + 24} \right\}$.
- (a) Fit the straight line to the following data

			0.4			
У	-1.85	-1.20	-0.55	0.15	0.80	1.35

by the method of least squares.

(b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t seconds. Find the velocity of the slider and its acceleration when t = 0.3 seconds.

	t	0	0.1	0.2	0.3	0.4	0.5	0.6
Ì	Χ	30.13	31.62	32.87	33.64	33.95	33.81	33.24

B.TECH. I Year(R09) Regular Examinations, May/June 2010 MATHEMATICAL METHODS

(Common to Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering, Electronics & Instrumentation Engineering, Electronics & Computer Engineering, Electronics & Control Engineering, Information Technology, Computer Science & Systems Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1. (a) Find the rank of the matrix
$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

(b) If
$$A = \begin{pmatrix} 4 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
, find A^{-1} .

- (a) Prove that the eigen values of a real symmetric matrix are all real.
 - (b) Reduce the following quadratic form to canonical form by Lagrange's reduction. $xy + y^2 + 4xz + z^2$ and hence find the index, signature and nature of the quadratic form.
- (a) Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using bisection method. (b) Find out the roots of the equation $x^3 x 4 = 0$ using false position method.
- (a) Obtain Picard's second approximate solution of the initial value problem \$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0\$.
 (b) Using the Taylor's series method, solve \$\frac{dy}{dx} = x^2 y, y(0) = 1\$ at \$x = 0.1\$.
- 5. (a) Obtain the Fourier series to represent $f(x) = e^{ax}$ in $0 < x < 2\pi$.
 - (b) If F (s) is the complex Fourier transform of f(x), then prove that $F\{f(x)\cos ax\} = \frac{1}{2}\{F(s+a) + F(s-a)\}.$
- (a) Obtain the partial differential equation by eliminating the arbitrary functions from z=yf(x)+xg(y).
 - (b) Solve by the method of separation of variables $\frac{du}{dx} = 2\frac{du}{dt} + u$, given $u(x,0) = 6e^{-3x}$.
- - (b) Solve the difference equation using Z-transform $u_{n+2}-3u_{n+1}+2u_n=0$, given that $u_0=0,u_1=1$.
- (a) If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = mW + c connecting P and W using the following data:

Р	12	15	21	25
W	50	70	100	120

Where P and W are taken in kg-wt. Compute P when W = 150 Kg.

(b) For the following data, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1

	X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
ĺ	У	7.989	8.403	8.781	9.129	9.451	9.750	10.031

B.TECH. I Year(R09) Regular Examinations, May/June 2010 MATHEMATICAL METHODS

(Common to Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering, Electronics & Instrumentation Engineering, Electronics & Computer Engineering, Electronics & Control Engineering, Information Technology, Computer Science & Systems Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) Find the constants 'l' and 'm' such that the rank of the matrix $\begin{pmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & l & m \end{pmatrix}$
 - (b) Find A^{-1} when $A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & -1 & 1 \\ -3 & 2 & 1 \end{pmatrix}$ by Gauss-Jordan method.
- (a) Prove that the eigen values of a skew Hermitian matrix are either purely imaginary or zero.
 - (b) Reduce the following quadratic from to canonical form by the diagonalisation method. Write also the corresponding linear transformation. Find the index, signature and nature of the quadratic $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_1x_3$.
- 3. (a) By using bisection method, find an approximate root of the equation $\sin x = \frac{1}{x}$ that lies between x=1 and x=1.5 (measured in radians). Carry out computation upto 7th stage.
 - (b) Find the root of the equation $2x \log_{10} x = 7$, which lies between 3.5 and 4 by Regula falsi method. (or) Find the real root of the equation 2x - $\log x = 7$, by successive approximate
- 4. Solve by the Taylor's series method of third order problem ^{dy}/_{dx} = (x³ + xy²)e⁻x, y(0) = 1 for x = 0.1, 0.2, 0.3.
 5. (a) Find a Fourier series to represent f(x)=x-x² in -π≤x≤π. Hence show that ¹/_{1²} ¹/_{2²} + ¹/_{3²} ¹/_{4²} + = ^{π²}/_{1²}.
 (b) If F(s) is the complex Fourier transform of f(x), then prove that F {f(x a) = e^{isa}F(s).
- (a) Form the PDE by eliminating the arbitrary function Ø from the relation $\emptyset(x^2 + y^2 + z^2, lx + my + nz) = 0.$
 - (b) Solve by the method of separation of variables $u_x = 4u_y$, $u(o, y) = 8e^{-3y}$.
- 7. (a) Find $z \{(\cos \theta + i \sin \theta)^n\}$. Hence evaluate $Z(\cos n\theta)$ and $Z(\sin n\theta)$.
 - (b) Find $z^{-1} \left\{ \frac{3z^2 + z}{(5z 1)(5z + 2)} \right\}$.
- 8. (a) Fit a straight line to the following data.

X	4	6	8	10	12
У	13.72	12.90	12.01	11.14	10.31

(b) Evaluate approximately, by trapezoidal rule, $\int (4x - 3x^2)dx$. By taking n = 10. Compute the exact integral and find the absolute and relative error.